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Paper

Spatiotemporal patterns and 
agroecological risk factors for 
cutaneous and renal glomerular 
vasculopathy (Alabama Rot) in dogs in 
the UK
Kim B Stevens,1,8 Rosanne Jepson,2 Laura Phillipa Holm,3 David John Walker,3 Jacqueline Martina Cardwell1

The annual outbreaks of cutaneous and renal glomerular vasculopathy (CRGV) reported in UK dogs display a 
distinct seasonal pattern (November to May) suggesting possible climatic drivers of the disease. The objectives 
of this study were to explore disease clustering and identify associations between agroecological factors 
and CRGV occurrence. Kernel-smoothed maps were generated to show the annual reporting distribution of 
CRGV, Kuldorff’s space–time permutation statistic used to identify significant spatiotemporal case clusters 
and a boosted regression tree model developed to quantify associations between CRGV case locations and a 
range of agroecological factors. The majority of diagnoses (92 per cent) were reported between November and 
May while the number of regions reporting the disease increased between 2012 and 2017. Two significant 
spatiotemporal clusters were identified—one in the New Forest during February and March 2013, and one 
adjacent to it (April 2015 to May 2017)—showing significantly higher and lower proportions of cases than the 
rest of the UK, respectively, for the indicated time periods. A moderately significant high-risk cluster (P=0.087) 
was also identified in the Manchester area of northern England between February and April 2014. Habitat was 
the predictor with the highest relative contribution to CRGV distribution (20.3 per cent). Cases were generally 
associated with woodlands, increasing mean maximum temperatures in winter, spring and autumn, increasing 
mean rainfall in winter and spring and decreasing cattle and sheep density. Understanding of such factors may 
help develop causal models for CRGV occurrence.

Introduction
Cutaneous and renal glomerular vasculopathy (CRGV)—
also known as ‘Alabama Rot’—is a disease of unknown 
aetiology variably associated with clinically relevant 
acute kidney injury (AKI). CRGV cases present with 
ulcerated skin lesions, most often affecting the distal 
limbs, progressing within 1–10 days to the development 
of AKI in some, but not all cases. Skin lesions have also 

been found to affect the face, nasal planum, oral cavity, 
tongue, ventrum and flanks. Additional biochemical and 
haematological findings commonly reported include 
mild to moderate hyperbilirubinaemia, anaemia and 
moderate to severe thrombocytopenia.1 

A study by Holm et al which reported on the renal 
histopathology of CRGV cases confirmed the lesions to be 
compatible with a thrombotic microangiopathy (TMA).1 
In human medicine, TMAs are considered a complex 
group of diseases which can involve both hereditary 
and acquired contributing factors to the development 
of clinical disease.2 Hereditary factors that have been 
identified include mutations in ADAMTS13 which result 
in the condition known as thrombotic thrombocytopenic 
purpura, complement factors, metabolic factors 
(methylmalonic aciduria and homocystinuria type C 
protein) and diacylglycerol kinase-ε—an abnormality 
of which results in a prothrombotic state. Autoantibody 
inhibition of ADAMTS13, Shiga  toxin exposure (Shiga 
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toxin-haemolytic uraemic syndrome), drug, toxin or 
complement immune-mediated acquired forms of TMA 
also occur.2 Preliminary investigations evaluating the 
existence of underlying infectious or toxic exposure (eg, 
Shiga toxin) have so far been unsuccessful.1

There has been much speculation in the general 
and non-peer-reviewed veterinary press on the possible 
existence of an association between CRGV occurrence 
and either specific habitats or weather conditions 
since the majority of early cases occurred in the New 
Forest in south-eastern England. However, it is unclear 
whether this apparent connection is simply the result 
of the coincident locale of the referral veterinary 
centre (LPH and DJW) that initially raised awareness 
of CRGV as a disease entity, or a true association. In 
addition, the UK outbreaks have so far displayed a 
distinct seasonal pattern with cases generally reported 
between November and May. Such cyclical occurrence 
of a disease often signifies the involvement of climatic 
factors, and the objectives of this study were to therefore 
explore associations between a range of agroecological 
factors and CRGV locations, as well as map and explore 
the distribution of cases between 2012 and 2017. The 
results of this study may help develop causal models 
for CRGV, assist with validation of current and future 
proposed pathogenic mechanisms and play a role in 
identifying the aetiology of the disease.

Materials and methods
All CRGV cases diagnosed between November 2012 and 
May 2017 were included in the analysis. Although one 
case was reported from Northern Ireland within this 
time period, it did not have locational data and was 

therefore excluded from the spatial, but retained for the 
temporal analysis.

Identification of cases
Cases were compiled by two investigators (DJW  and 
LPH) and comprised 70 (68 per cent) from first-opinion 
practice and 33 (32 per  cent) from referral centres. 
A diagnosis of CRGV was based on the presence of 
compatible clinical signs (including skin lesions), 
laboratory diagnostics (including AKI±oligoanuria, 
progression to azotaemia, hyperbilirubinaemia, 
anaemia and thrombocytopenia) and renal 
histopathology findings compatible with TMA. Renal 
histopathology was available either in isolation or as 
part of a full postmortem examination in all cases, and 
in most cases dermal pathology was also available.

The residential postcode of all CRGV cases was 
available together with the postcode of where the dog 
had been recently walked, if markedly different from the 
residential postcode (eg, owners had been on holiday in 
the New Forest area yet normally resided in a different 
part of the country). Where the residential and walked 
postcodes differed (n=5), both postcodes were included 
in the data  set creating a data  set of 107 postcodes 
for inclusion in the spatial analysis. Postcodes were 
converted to Easting and Northing Cartesian coordinates 
and the British National Grid projection used for all 
spatial analyses.

Agroecological data
As nothing is known about the environmental 
epidemiology of CRGV a broad general selection of 
agroecological predictors was identified for initial 

TABLE 1:  Descriptors of the spatial agroecological predictor variables selected to model the distribution of cases of cutaneous and renal glomerular 
vasculopathy in dogs in the UK
Predictor name Descriptor Data source

CattleDens Density of cattle (heads/km2) Gridded Livestock of the World
(http://www.fao.org/ag/againfo/resources/en/glw/home.html)SheepDens Density of sheep (heads/km2)

PigDens Density of pigs (heads/km2)
Habitat Expected habitat for the soiltype NATMAP SoilScapes map for England and Wales (1:250,000) (http://www.

landis.org.uk/data/nmsoilscapes.cfm)Landcover Expected landcover for the soiltype
SoilDrain Soil drainage characteristics
SoilFert Soil fertility characteristics
AvTemp Mean temperature of the spring (Sp), summer (Su), autumn (Au) and winter (Wi) 

months (°C)
UK Met Office 5 km x 5 km gridded data sets
(https://www.metoffice.gov.uk/research/climate/climate-monitoring/
ukcp09/register)AvMaxTemp Mean maximum temperature of the spring (Sp), summer (Su), autumn (Au) and 

winter (Wi) months (°C)
AvMinTemp Mean minimum temperature of the spring (Sp), summer (Su), autumn (Au) and 

winter (Wi) months (°C)
AvRain Mean rainfall of the spring (Sp), summer (Su), autumn (Au) and winter (Wi) 

months (mm)
AvRainDays1 Mean number of days with a rainfall of >1 mm in the spring (Sp), summer (Su), 

autumn (Au) and winter (Wi) months (days)
AvRainDays10 Mean number of days with a rainfall of >10 mm in the spring (Sp), summer (Su), 

autumn (Au) and winter (Wi) months (days)
GrndFrostDays Mean number of days with ground frost in the spring (Sp), summer (Su), autumn 

(Au) and winter (Wi) months (days)
AirFrostDays Mean number of days with air frost in the spring (Sp), summer (Su), autumn (Au) 

and winter (Wi) months (days)
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inclusion in the model and the necessary digital spatial 
data layers sourced as detailed in table 1. Soil drainage, 
fertility, habitat and land  cover were extracted from 
the 1:250,000 NATMAP SoilScapes map for England 
and Wales. There is no such map available for Scotland 
and therefore the spatial modelling was confined to 
England and Wales, and all other predictor data were 
clipped to this extent. Cattle, sheep and pig densities 
were extracted from Gridded Livestock of the World 
(http://www.​fao.​org/​ag/​againfo/​resources/​en/​glw/​
home.​html), and climate data extracted from the UK’s 
Met Office gridded land surface climate observations 
(monthly climate variables at 5 km resolution) held by 
the Centre for Environmental Data Analysis (http://​
catalogue.​ceda.​ac.​uk/​uuid/​87f4​3af9​d02e​42f4​8335​
1d79​b3d6162a).

For the purpose of analysis, the original soil drainage, 
habitat and landcover categories were retained, but 
the 12 original soil fertility categories were collapsed 
into six as follows: high; moderate to high; moderate; 
low (low + very low); lime rich (lime rich + lime rich to 
moderate + lime rich to very low + low to lime rich); and 
mixed (low to high + low to moderate). 

Climatic variables downloaded included monthly 
data for mean temperature, maximum temperature, 
minimum temperature, rainfall, rain days 1 mm, rain 
days 10 mm, air frost and ground frost. These data were 
downloaded for the period September 2011 to December 
2016 (2017 data were unavailable). Although the first 
cases were recorded in November 2011, climate data 
for the preceding two months were included to allow for 
the creation of the autumn 2011 variables (September 
to November), resulting in six years of autumn data but 
only five years of data for the remaining seasons. The 
variables snow-falling and snow-lying would have been 
included in the analysis but the data were not available 
after 2011. As reporting of CRGV cases has displayed a 
strong seasonal pattern with cases occurring primarily 
in winter and spring, rather than use monthly or annual 
data, monthly climatic variables were aggregated 
to create seasonal versions of each variable on the 
following basis: spring (March to May), summer (June to 
August), autumn (September to November) and winter 
(December to February). For each of the three months 
comprising a season, the relevant monthly raster 
maps were summed and divided by 18 (autumn) or 
15 (spring, summer, winter) to create a mean seasonal 
version of each climatic variable. The final climatic 
variables included in the model for each season were: 
mean temperature, mean maximum temperature, mean 
minimum temperature, mean rainfall, mean number 
of days with rainfall more than 1 mm, mean number of 
days with rainfall more than 10 mm, mean number of 
days experiencing ground frost and mean number of 
days experiencing air frost (table 1).

All layers were resampled to a resolution of 1 km2 and 
clipped to the England-Wales extent. ArcGIS software 

V.10.5.1 was used to extract values of each predictor 
variable to the case and background data points to 
create the complete data set, which was then randomly 
divided into training, validation and test sub-data sets 
comprising 60, 20 and 20 per cent of the data points, 
respectively.

Mapping the spatiotemporal distribution of cases
A heat map was created using the R tidyverse package3 4 
to illustrate the temporal reporting pattern of CRGV cases 
between 2012 and 2017 by both month and year. 
Kernel-smoothed maps were generated for individual 
years and for the study period as a whole to show the 
spatial distribution of cases. Optimum bandwidth was 
estimated using the quartic approximation of a true 
Gaussian kernel function. A bandwidth of 20 km was 
used for all maps with an output cell size of 1 km2. All 
maps were produced using ArcGIS V.10.5.1.

Cluster detection
Kuldorff’s space–time permutation statistic 
(implemented in SaTScan V.9.5) was used to identify 
spatiotemporal clusters as this statistic requires only 
case data (spatial location and time for each case), 
with no information needed about controls or the 
population at risk. The number of observed cases in 
a cluster is compared with what would have been 
expected if the spatial and temporal locations of all 
cases were independent of each other so that there is 
no space–time interaction. That is, there is a cluster in 
a geographical area if, during a specific time period, 
that area has a higher proportion of its cases in that 
time period compared with the remaining geographical 
areas. Cartesian coordinates of all cases were used as 
the spatial inputs and month of reporting was used 
to indicate the timing of each case. The data were 
analysed for the study period as a whole. Clustering and 
cluster detection tests are viewed as complimentary as 
they test different hypotheses, and a simulation study 
by Waller et al5 indicated that it is possible to have a 
significant cluster, but no overall significant clustering. 
For this reason, tests for clustering were not run prior 
to implementing the space–time permutation statistic.

CRGV suitability modelling
The suitability models were generated using boosted 
regression trees (BRT), a robust machine learning 
method with the ability to account for non-linearity 
and complex relationships between the dependent and 
predictor variables.6 BRTs differ from the traditional 
regression methods commonly used in epidemiological 
studies in that rather than producing a single ‘best’ 
model, they optimise predictive performance by using 
the technique of boosting to adaptively combine large 
numbers of relatively simple tree models.6 As well 
as being more easily interpreted than other machine 
learning methods such as support vector machines 
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or random forest models, BRTs have been shown to 
generally outperform more conventional approaches, 
such as logistic regression, in general species 
distribution modelling studies.7

Background data points
As calibration of the BRT model used to identify 
associations between agroecological risk factors and 
CRGV distribution required both presence and absence 
records, 2000 background points were randomly 
generated within the confines of the England/Wales 
boundary in order to characterise the agroecological 
conditions existing within. The number of background 
points was a trade-off between adequately characterising 
the variability in the environment while maintaining 
a sufficiently high prevalence so as to not suffer from 
possible bias linked to artificially induced prevalence.8

Calibration and evaluation of the BRT model
The BRT algorithm was implemented using the gbm 
package (V.1.6–3) in R V.3.3.13 together with the 
k-fold cross-validation stagewise function available 
from  Elith  et  al.6 Pairwise combinations of a range of 
potential lr and tc were trialled to determine the best 
combination for identifying the optimal number of 
trees (a tree complexity of 4 and learning rate of 0.005). 
This optimum combination should result in more than 
1000 trees6 while allowing the model to converge. A 
Bernoulli error structure was specified and stochasticity 
was maintained through a bag fraction of 50 per cent. 
As there was considerable collinearity between the 
two variables habitat and land  cover (habitat nested 
within land cover), models were run with either habitat 
or land  cover (keeping all other predictor variables 
constant) to determine which of the two predictors had 
the higher relative contribution to CRGV distribution 
and this variable was retained in the model while the 
other was dropped. In order to determine whether any 
variables were best omitted from the model, variables 
were removed in turn, starting with those having the 
smallest relative influence, and average change in 
predictive deviance calculated. Variables for which 
this value exceeded the model’s original estimated 
standard error were excluded from the model.

Relative influence or contribution of the predictor 
variables to the response was calculated using formulae 
developed by Friedman9 and implemented in the gbm 
package. These measures are based on the number 
of times a variable is selected for splitting, weighted 
by the squared improvement to the model as a result 
of each split, and averaged over all trees. The relative 
contribution of each variable was scaled so that 
together they summed to 100 with higher numbers 
indicating a stronger contribution to the response. 
Partial dependence plots describing relative probability 
of CRGV presence in relation to the range of values of 
each predictor variable were generated after accounting 

for the average effects of all other variables in the model. 
The predictive power of the model was evaluated using 
the test data set and area under the receiver operating 
characteristic curve (AUC) computed for the binary 
classifier.

Results
Temporal pattern of CRGV case reporting
The first known cases of CRGV were reported in 2012 
(November/December: 4  per  cent; n=4) with a slight 
increase in the following year (7 per cent; n=7). Number 
of reported cases peaked in 2014 with a third of all cases 
reported in this year (33 per cent; n=35) and decreased 
gradually thereafter (January 2017 to May: 17 per cent; 
n=18) (figure 1). Seasonally, CRGV cases were reported 
largely between December and May (winter/spring) with 
a third of all cases diagnosed in the first three months 
of the year (January to March). Only 7 per cent of cases 
(n=7) were reported in the summer months (June to 
August) with no cases reported in October (figure 1).

Spatial distribution of CRGV cases
The kernel density maps in figure 2 show the density 
of CRGV cases (cases/km2) with darker brown areas 
exhibiting a higher reporting density of cases and 
lighter brown areas a lower (or no) reporting density 
of cases. Although the four initial cases of CRGV in 
2012 were distributed randomly throughout England, 
in subsequent years reporting of the disease showed 
a tendency to cluster in certain areas (figure  2). In 
2013, cases were located around the New Forest 
on the southern coast of England and  2014 saw 
the expansion of this CRGV hotspot of reporting 
together with the development of a second area of 
high reporting density in the Manchester region of 
Northern England. These two main high-density 
reporting areas (New Forest and Manchester) persisted 
through to 2017 although the New Forest hotspot was 
not apparent in 2016, replaced instead by an area of 
high reporting density around Greater London and a 
smaller area of activity on the south coast of Wales. In 
2017, distribution of cases was the most diffuse of all 
five years. In all years, the areas with a high reporting 
density of cases were generally accompanied by a few 
localised cases of CRGV scattered throughout England 
(figure 2).

A map of the reporting density (cases/km2) of all 
cases aggregated over the five-year period shows the 
north-east of England and the New Forest region of 
south England to have the highest five-year density of 
CRGV cases (figure 3). A diffuse triangular area covering 
a large part of south-central England showed a medium 
to high reporting density of cases.

Kuldorff’s spatiotemporal permutation statistic 
identified three spatiotemporal clusters. The cluster 
locations are shown in figure 3 and details of each are 
provided in table  2.  The most likely cluster occurred 
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between April 2015 and May 2017 and included the area 
immediately to the right of the New Forest. This region 
reported a significantly (P=0.002) lower proportion of 
CRGV cases than the rest of the UK (figure 3). Between 
February and March 2013, the New Forest region on 
the south coast of England exhibited a significantly 
(P=0.004) higher proportion of cases than the rest of 
the UK while between January and April 2014 the area 
around Manchester reported a moderately significantly 
(P=0.087) higher proportion of cases than the rest of 
the UK (figure 3).

Agroecological factors associated with CRGV distribution
As habitat explained a greater proportion of the 
variability in CRGV distribution than land cover (20.3 vs. 
16 per cent), it was retained in the final model. The final 
predictive model contrasting CRGV case locations with 
background points had a good accuracy, with an AUC 
of 0.903 when evaluated against the model calibration 
data set and an AUC of 0.884±0.022 when evaluated 
with cross-validation as implemented by  Elith  et  al.6 
The suitability map (figure  4) highlights areas of 
predicted high suitability for CRGV case occurrence and 
resembles the aggregated kernel-density map of CRGV 
case distribution for 2012–2017 (figure 3). Areas with 
the highest predicted suitability for CRGV occurrence 
include West Sussex, southern Dorset and southern 
Hampshire in the south of England, and the greater 
Manchester area in the north of England, together with 
the eastern regions of South Glamorgan and western 
Gwent in Wales. In addition, there are small localised 
areas of high suitability dotted throughout England, 
specifically in the counties of Somerset, West Midlands 
and Nottinghamshire. Most of southern England, apart 

from south-west England, is classified as moderately 
suitable. Broad regions of low suitability include North 
and Central Wales, East Anglia, most of East Midlands, 
North Yorkshire, North East England and the northern 
half of North West England (figure 4).

Four variables (AirFrostDays_Su, SoilDrain, 
RainDays10_Su and GrndFrostDays_Su) were removed 
from the model on simplification leaving 34 variables. 
The relative contribution of each of these predictor 
variables is presented in figure 5 and can be divided into 
roughly four groups based on their relative influence 
on CRGV distribution: important, moderate, low and 
negligible contributors. Habitat was the only important 
predictor in the model accounting for 20.3 per cent of 
the variation in CRGV distribution. AvMaxTemp_Wi 
(8.8  per  cent), AvRain_Wi (6.4  per  cent), SheepDens 
(6.3 per cent), CattleDens (6.1 per cent) and AvTemp_
Sp (5.5 per cent) were moderate contributors together 
accounting for an additional 33.1  per  cent of the 
variation in disease distribution. These variables, 
together with AvRain_Sp (4.9  per  cent), AvMaxTemp_
Sp (4.0  per  cent), AvMaxTemp_Au (3.8  per  cent) and 
PigDens (2.5 per cent), accounted for 68.4 per cent of 
the variation in CRGV distribution. Predictors with a 
negligible impact on CRGV distribution included soil 
fertility, number of days of ground (Au,  Wi/Sp) or air 
frost (Wi/Sp) and number of days with more than 1 (Wi/
Sp) or more than 10 mm of rain (Au/Wi/Sp) (figure 5).

Dependency profiles for the first 10 predictors 
are shown in figure  6. The dependency profile for the 
predictor of primary importance (Habitat) shows that 
four habitat types are specifically associated with 
CRGV distribution (in decreasing order of importance): 
‘mostly lowland dry heath communities’, ‘wet acid 
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FIG 1:  Heat map illustrating the temporal distribution of 107 cases of cutaneous and renal glomerular vasculopathy (CRGV) in dogs in the UK, divided by 
month and year (November 2012 to May 2017, inclusive). Months are shown on the x axis and years on the y axis. The shading of the blue blocks represents 
the frequency of CRGV cases reported that month (lighter shading = higher frequency). The grey background is visible when no cases were reported in a 
month.
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meadows and woodland’, ‘wet flood meadows with wet 
carr woodlands in old river meanders’ and ‘acid dry 
pastures; acid deciduous and coniferous woodland; 
potential for lowland heath’. Woodland was a common 
descriptor in all but the most important habitat (‘mostly 
lowland dry heath communities’). Habitat types least 
likely to be associated with CRGV occurrence included 
‘base-rich pastures and classic chalky boulder clay 
ancient woodlands; some wetter areas and lime-rich 

flush vegetation’, ‘base-rich pastures and deciduous 
woodlands’, ‘steep acid upland pastures dry heath 
and moor; bracken gorse and oak woodlands’ and ‘wet 
brackish coastal flood meadows’. Pasture was a common 
descriptor in all these apart from the ‘wet brackish 
coastal flood meadows’ habitat. Dependency profiles for 
the remaining nine predictors showed that, in addition 
to associations with specific habitat types, increasing 
relative probability of CRGV presence was associated 
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FIG 2:  Maps showing annual location and kernel-smoothed density of cases of cutaneous and renal glomerular vasculopathy (CRGV) in dogs in the UK 
between January 2012 and May 2017 (inclusive).
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with increasing mean maximum temperatures in winter, 
spring and autumn, increasing mean rainfall in winter 
and spring, increasing mean temperature in spring, 
decreasing cattle and sheep density and variable pig 
density.

There was a mild interaction (strength: 10) between 
the variables Habitat and AvMaxTemp_Wi with 
increased probability of CRGV occurrence in three 
Habitats—‘mostly lowland dry heath communities’, ‘wet 
acid meadows and woodland’, and ‘wet flood meadows 
with wet carr woodlands in old river meanders’—
associated with increasing mean maximum winter 
temperatures (figure 7).

Discussion
The first known cases of CRGV in UK dogs were reported 
in 2012 and although initial numbers were very low 

(2012: n=3) annual frequency of reported cases showed 
a general increase, although exhibiting occasional 
year-on-year variation. Diseases that ‘have newly 
appeared in a population or have existed previously but 
are rapidly increasing in incidence or geographic range’ 
are defined as ‘emerging’,10 and can be further divided 
into those that are ‘newly emerging’ (ie, not previously 
recognised) or ‘re-emerging/resurging’ (ie, diseases that 
were a  major problem before declining dramatically, 
and then increasing again). The outbreak pattern of 
CRGV in the UK accords with the definition of a newly 
emerging disease as no cases were reported prior to 
2012. However, that does not mean that the disease was 
completely unknown in the country as it may simply not 
have been recognised owing to a very low incidence in the 
population prior to 2012. A thorough search of practice 
records is needed to definitely rule out the absence of 
potential CRGV diagnoses in UK dogs before 2012.

Newly emerging infections are often the result of 
microbial, host and environmental factors interacting to 
create opportunities for infectious agents to evolve into 
new ecological niches. Factors that can contribute to this 
emergence/re-emergence include changing ecosystems, 
climate and weather, and microbial adaptation and 
change.10 Our BRT model identified the highest relative 
probability of CRGV occurrence to be associated with a 
range of agroecological factors specifically, woodland 
and heath habitats, decreasing cattle and sheep 
densities, increasing maximum temperatures in winter 
and, to a lesser extent, spring and autumn, and higher 
mean rainfall in winter and spring.

2: 1/2/2013 - 31/3/2013

1: 1/4/2015 - 31/5/2017

0 20 40 80 120
Kilometers

N

3: 1/3/2014 - 30/4/2014

Density
(cases/sq km)

0 - 0.00035

0.00035 - 0.0011

0.0011 - 0.0024

0.0024 - 0.0046

0.0046 - 0.0075

FIG 3:  Map showing location and kernel-smoothed density of cases of 
cutaneous and renal glomerular vasculopathy (CRGV) in dogs in the UK 
( January 2012 to May 2017) together with the location of two spatiotemporal 
clusters exhibiting a significantly higher proportion of cases (o), and one 
spatiotemporal cluster exhibiting a significantly lower proportion of cases 
(o), than the remainder of the UK. Clusters were identified using Kuldorff’s 
space–time permutation statistic.

TABLE 2:  Characteristics of the high- and low-risk clusters of cases 
of cutaneous and renal glomerular vasculopathy (CRGV) in dogs in the 
UK (January 2012 to May 2017) as identified by Kuldorff’s space–time 
permutation statistic

Cluster ID Risk level Date
Expected 
cases

Observed 
cases P values

1 Low April 1, 
2015 to May 
31, 2017

10 0 0.002

2 High February 
1, 2013 to 
March 31, 
2013

0 4 0.004

3 High January 31, 
2014 to April 
30, 2014

1 5 0.087

Predicted
suitability

0 - 0.1

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.6

0.6 - 0.7

0.7 - 0.8

0.8 - 0.9

0.9 - 1

CRGV case

0 25 50 100 150
Kilometers

N

FIG 4:  Map showing predicted suitability of England and Wales for the 
occurrence of cases of cutaneous and renal glomerular vasculopathy (CRGV) 
in dogs. Yellow dots represent the location of reported CRGV cases (n=107).
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Habitat, in particular woodlands and lowland dry 
heath communities, was the variable identified by the 
BRT model to have the highest relative contribution 
to CRGV occurrence (20.3  per  cent). However, UK 
woodlands are not a unified entity. Ranging from 
the ancient trees and woodland pasture of the New 
Forest’s old hunting grounds where CRGV clustered 
in 2013, to the ash woodland of the Derbyshire Dales 
and Peak District, the lime woods of the East Midlands 
and the beech woods in the Wye Valley, Cotswolds 
and Chilterns, the woodlands of the UK are highly 
diverse, each characterised by different types of trees 
largely influenced by geology, soils, climate and 
history (https://www.​woodlandtrust.​org.​uk/​visiting-​
woods/​trees-​woods-​and-​wildlife/​woodland-​habitats/​
exploring-​woodland-​habitats/; accessed January 14, 
2017). They also provide a rich habitat for a wide range 
of wildlife, plants and fungi and this diversity makes it 
very difficult to isolate a single pathogen that might be 
the cause of CRGV. Lowland heath communities are also 
highly varied. Pastures were the habitat least associated 
with CRGV occurrence which, combined with the 

decreasing domestic livestock densities, suggests it 
is unlikely CRGV is the result of a livestock-related 
pathogen to which dogs are exposed while walking 
across pastures, either from contact with the livestock 
themselves or their excretions, or from the practice of 
applying slurry to pastures.11 The lack of an association 
with pasture habitats is supported by the decreasing 
relative probability of CRGV presence with increasing 
sheep and cattle densities.

Although habitat was the main contributor to the 
BRT model, a range of climatic variables were identified 
to be of moderate importance in CRGV occurrence. 
CRGV cases were more likely to be diagnosed under 
milder (increasing AvMaxTemp_Wi/Sp/Au), wetter 
(increasing AvRain_Wi/Sp) conditions in the colder 
months as typified by the south and west of the 
country. However, the fact that Wales and most of 
south-west England (the most extreme of these) were 
two of the regions predicted to be the least suitable 
for CRGV occurrence as illustrated in the risk map 
(figure 4) suggests that appropriate climatic conditions 
on their own are insufficient; the concomitant presence 
of suitable habitats appears to be essential for CRGV 
occurrence (Wales and most of south-west England are 
dominated by pastures). This hypothesis is supported 
by the interaction identified by the BRT model between 
habitat and AvMaxTemp_Wi. Similarly, those years 
in which the disease was not reported in the New 
Forest region may have lacked the necessary climatic 
conditions (eg, colder winters) despite the habitat 
being suitable. By the same token, it is possible that the 
low-risk cluster adjacent to the New Forest area lacks 
either optimal climatic conditions or suitable habitat 
for disease occurrence.

It is interesting to note that disease distribution 
was associated with maximum seasonal temperatures 
(autumn, winter and spring) while the effect of 
minimum seasonal temperatures on CRGV distribution 
was negligible. A study of changing climate extremes 
associated with warming has shown that daily 
minimum and maximum temperatures have both been 
increasing globally, although the former more than the 
latter.12 Climate is mostly a factor in diseases caused 
by pathogens that spend part of their life cycle outside 
the host, exposed to the environment.13 Increasing 
maximum temperatures during the colder months 
in the  UK may have provided a favourable habitat 
for an evolving organism or a new ecological niche 
for a pathogen that had always been present in the 
environment but was previously unable to flourish 
in the comparatively cooler conditions of previous 
decades. Isolating those climatic factors that might 
have played a role in the emergence of the disease 
(pre-2012) may assist in the development of causal 
models for CRGV and help identify the aetiology of the 
disease.
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FIG 5:  Relative contribution of the 34 predictor variables modelling the 
spatial distribution of cutaneous and renal glomerular vasculopathy (CRGV) 
in dogs in the UK (2012–2017). Relative influence (or contribution) of 
each variable is scaled so that the sum adds to 100, with higher numbers 
indicating stronger influence on the model outcome. Colours refer to 
category of predictor variable.
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Limitations
CRGV was initially reported largely in the New Forest 
area of England resulting in an increased interest and 

awareness of the disease in this region which may have 
biased the habitat results towards woodland. However, 
since its inception in 2012, CRGV has been reported in 
other parts of the UK. In addition, the disease has been 
widely publicised in national and local media so that 
increased awareness may no longer be confined to the 
New Forest area and therefore any potential habitat-
related biases arising from the regional focus are likely 
to have been mitigated over time. Only five (5 per cent) 
of the 103 cases provided a walking postcode that 
differed substantially from their residential postcode 
as a result of the affected dogs having accompanied 
their owners on holiday to, for example, the New 
Forest region. However, the walking postcodes of other 
animals may also differ from their residential postcode, 
especially in terms of habitat. However, this bias will 
have been mitigated to some extent as the resolution of 
all agroecological variables used in this study was 1 km2 
and therefore, provided dogs were walked within 1 km 
of their residential postcode there would have been no 
difference between the values of their residential and 
walking postcodes. However, for dogs walked greater 
than 1 km2 from their residential postcode, there may 
have been a difference and therefore for future studies 
of ecological risk factors it is important to obtain both 
the walking and residential postcodes.

Cluster detection tests typically require some 
estimate of the population at risk in order to allow for 
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FIG 6:  Partial dependence plots or boosted regression tree (BRT) profiles for the top 10 predictor variables modelling the spatial distribution of cutaneous 
and renal glomerular vasculopathy (CRGV) in dogs in the UK (2012–2017). Partial dependence plots show the predicted dependence between the dependent 
variable of the BRT model on the y axis (probability of CRGV presence) versus each predictor variable on the x axis. The top 10 predictor variables were 
included in this figure: Habitat, AvMaxTemp_Wi (°C), CattleDens (heads/km2), SheepDens (heads/km2), AvRain_Wi (mm), AvTemp_Sp (°C), AvRain_Sp (mm), 
AvMaxTemp_Sp (°C), AvMaxTemp_Au (°C) and PigDens (heads/km2). Relative contribution of each predictor variable is given in brackets and a key provided 
for habitat types. Habitat types in bold (1, 7 12, 14) are those associated with CRGV presence.
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FIG 7:  Interaction between the variables Habitat and AvMaxTemp_Wi in the 
boosted regression tree (BRT) model for the spatial distribution of cutaneous 
and renal glomerular vasculopathy (CRGV) in dogs in the UK (2012–2017). 
Interaction plots show the predicted dependence between the dependent 
variable of the BRT model on the y axis (probability of CRGV presence) 
versus the combined effect of each of the two interaction predictor variables 
on the x and y axes. The two predictor variables included in the interaction 
shown in the plot are Habitat and AvMaxTemp_Wi (°C).
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identification of areas with a higher risk of disease 
while simultaneously compensating for the uneven 
distribution of the population. As this study lacked 
control or population-at-risk data, Kuldorff’s space–
time permutation statistic was implemented instead 
of the more commonly used space–time scan statistic. 
While the traditional scan statistic seeks to identify 
significant excess of cases within a specific space–time 
window and provides a measure of how unlikely it 
would be to encounter the observed excess of cases in 
a larger comparison region, the permutation statistic, 
on the other hand, seeks to identify areas with a higher 
proportion of cases compared with the remaining 
geographical regions of the study area. However, an 
important limitation of the permutation statistic is 
that without population-at-risk  data it is not possible 
to determine whether identified clusters are due to an 
increased risk of disease, or to different geographical 
population distributions at different times (eg, an influx 
of tourists and their pets to coastal resorts during the 
summer months), especially when the study covers 
more than a single year. However, CRGV cases have 
generally been reported during the colder months when 
tourism generally falls off, mitigating the effect of this 
limitation to some extent and making it more likely 
that the identified clusters are due to increased disease 
risk rather than different geographical population 
distributions.

As the two clusters identified in south-eastern 
England were reasonably close to the southern 
boundary of the study area as defined by the physical 
barrier of the sea, it is necessary to acknowledge the 
possible existence of edge effects. Although edge effects 
may be negligible when dealing with large-scale effects, 
they can be considerable when estimating small-scale 
effects close to the boundary. Edge effects are usually 
dealt with either by using a weighting system that gives 
less weight to those observations near the boundary, 
or through the use of guard areas.14 Unfortunately, 
Kuldorff’s space–time permutation statistic (as 
implemented in SaTScan V.9.5) does not allow for the 
use of a weighting system. However, as none of the 
identified clusters intersect with a coastal boundary, 
and are in fact some distance inland, it is unlikely 
that edge  effects will have substantially distorted the 
estimates of the space–time permutation technique in 
this instance.

Similarly, calibration of the BRT model also 
requires both disease presence and absence data. 
However, when lacking absence data for species 
distribution modelling alternatives exist in the form 
of pseudoabsence or background data. Background 
data are sampled from the whole study area in order 
to characterise the environmental conditions existing 
within it.15 It can be argued that the use of background 
data has advantages over that of disease absence data 
as the latter can be problematic making it difficult to 

distinguish between absence of disease and lack of 
observation or reporting of disease events in an area. 
Alternatively, the disease species may be absent, even 
though the habitat is suitable for its occurrence, due 
to a geographical or man-made barrier preventing 
its spread into the area.16 These situations can be 
considered ‘false absences’, biasing study results. Lobo 
et  al17 identified three types of absence data typically 
occurring in primary data  sets—environmental, 
contingent and methodological—and insisted that to 
optimise prediction from species distribution models 
all absences should ideally be environmental ones; 
contingent and methodological absences being deemed 
‘noise’. The use of background data to characterise the 
environment of the study area therefore largely removes 
the biases associated with false absences and mimics 
the environmental absences required to optimise 
prediction from species distribution models.

In this study, we used fixed seasons although it could 
be argued that such an approach is not appropriate if, 
as reported, spring and autumn are becoming shorter in 
duration.18 However, the data in this study cover a five-
year period making it difficult to account for the official 
start of each season each year. Furthermore, the start of 
each season will occur over a period of weeks across the 
country and therefore a fixed approach in defining the 
seasons gives a benchmark for a unified analysis of data 
from different regions and different years.

Conclusion
The results of this study provide owners with a broad 
overview of when and where their dogs are likely to be 
most at risk of developing CRGV in the UK. Outbreaks 
displayed a distinct seasonal pattern with more than 90 
per cent of cases reported between November and May 
while the area from which cases have been reported has 
expanded since 2012 to encompass most of the western 
and southern regions of England. The eastern parts of 
the country—East Anglia in particular—appear to have 
a decreased risk of disease. These factors, together with 
the association identified between disease occurrence 
and specific habitats (CRGV occurrence was most 
frequently associated with woodlands and lowland dry 
heath and least associated with pastures), provide dog 
owners with an indication of when to be most vigilant 
for symptoms of the disease, as early identification 
and treatment is critical. Further research into factors 
differentiating high and low-risk regions—especially 
the adjacent high and low-risk clusters identified in 
south-eastern England—has the potential to provide 
further information central to the epidemiology of this 
disease.
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